Augmented reality virtual elements, virtual reality, artificial intelligence- exactly what are they and how do they interact with one another? Every moment of our waking lives, we use our five senses to learn about our world. In our daily reality, we see people and cars moving on the street, or hear a colleague talking with a client in the next cubicle. We can smell something burning or peculiar fish smells or our morning bacon cooking. Our senses can tell us a lot — but we may still be missing some very important information. If today’s innovators have their way, augmented reality virtual elements will soon fill in those sensory gaps for us.
Four Categories of Augmented Reality Virtual Elements
An online guide to augmented reality describes four different categories of AR. Marker-based AR (also called Image Recognition) can determine information about an object using something called a QR/2D code. It uses a visual marker. Markerless AR is location-based or position-based. GPS devices might fit into this category. Projection-based AR projects artificial light onto real world surfaces. And superimposition-based AR puts a virtual object into a real space, such as IKEA’s software that lets you see how a couch might look in your living room.
Augmented Reality devices in various stages of development include:
- sensors and cameras
- projectors
- eyeglasses
- heads-up display (HUD)
- contact lenses
- virtual retinal display (VRD)
- handheld
A Second Intelligence
Your curiosity about this subject is a sign of your own intelligence, but computing machines offer us something different. Artificial intelligence (AI) uses the computing power of machines to perform tasks that are normally associated with intelligent beings. Those tasks include activities related to perception, learning, reasoning, and problem solving. AI can add to our personal experience through something called augmented reality (AR).
We should not confuse the two terms, although they are related. You might compare them to what we know as perception and reason in human beings. We perceive the world through our five senses, but we interpret those perceptions through our reasoning powers. Augmented reality uses devices like smart glasses and handheld devices to provide us with more data and add to our perceptions, but it is artificial intelligence that makes sense of all that information.
What is Augmented Reality virtual elements without AI? It is like eyes without a brain. Tyler Lindell is an AI/ AR/ VR software engineer for Holographic Interfaces, as well as a software engineer at Tesla. In an article called “Augmented Reality Needs AI In Order To Be Effective”, he says that most people don’t realize that “AI and machine learning technologies sit at the heart of AR platforms”.
Another Set of Eyes and Ears
There are some larger questions about the meaning of intelligence and the role of computers that are always good to trigger research and deep conversations. I have written about the history of artificial intelligence and whether machines can actually think. Recently I took another look at J.C.R. Licklider’s vision for man-computer symbiosis. But for those in the business world or in a production environment, you may just want to know what these technologies can do. An article from Lifewire tells us that augmented reality “enriches perception by adding virtual elements to the physical world”.
Just as our eyes and ears need the brain to interpret the sights and sounds that are presented to us, Augmented reality virtual elements depends on AI to provide pertinent information to the user in real time. Imagine taking a walk through the city. You see buildings and landmarks. If you looked through an AR device, it could give you more information, such as the name or address of the building, or some history about the landmark.
Technology in Transition
The potential of augmented reality virtual elements backed by artificial intelligence is only now being realized in the marketplace. Tech evangelist Robert Scoble and his co-author Shel Israel believe that we are only in the beginning stages of technological development that will have an enormous impact. In their 2016 book The Fourth Transformation: How Augmented Reality & Artificial Intelligence Will Change Everything, they say that we are on the cusp of a new stage. The four “transformations” in their theory can be summarized with these headings:
- Text and MS-DOS
- Graphical user interfaces
- Small devices
- Augmented reality
The technological revolution is already underway. Google’s experiment with smart glasses was an early entry into the consumer AR market. Now augmented reality is being introduced into a broad spectrum of industries, from construction to military. IKEA and other retailers have seen the value of augmenting the views of customers who may potentially place furniture into their homes. Architects and builders are using AR to visualize how new construction might fit into current settings. AR solutions are being developed for technicians in a variety of fields to get analytics in real time. Soldiers with AR visors will be able to get battlefield data as fighting occurs.
The Ironman movies from Marvel Comics give us an illustration of augmented reality. In his high-tech suit, the character Tony Stark sees constantly changing data that he would never have perceived on his own. An artificial intelligence in the suit searches its vast data sources and offers split-second assessments based on immediate events. Like Ironman, AR devices in the coming years will be highly dependent on AI and its resources to aid us in our tasks
Challenges in Augmented Reality Virtual Elements
It takes a while for applied science to catch up with the imaginations of science fiction. There are such limitations as physics that prevent the speedy invention and implementation of the devices on our wish list. The flip mobile phone reminded some people of Captain Kirk’s communicator, but it took a lot of technology to get us there. Ironmen’s augmented reality has a lot more challenges.A short cartoon posted by The Atlantic shows how augmented reality will change tech experiences.
The company Niantec offers a smartphone app that gives you information about the places you visit. “The application was designed to run in the background and just to pop up,” says the narrator.
The next Niantec project was Pokémon GO, an augmented reality game that went viral. The company’s CEO, John Hanke, says that “AR is the spiritual successor to the smartphone that we know and love today.” However clever our ideas, the obstacles can be overwhelming. What happens when Ironman or Captain Kirk lose connectivity? How much bandwidth is required to transmit all that data, and what do we do when transmission channels become congested?
How can AI access the pertinent data quickly enough to be helpful when we need it? And how can we manage all that information?
Conclusion
There are so many potential use cases for augmented reality that go beyond the scope of this article. In the hands of police, the military, or rescue personnel, AR devices could help catch criminals, win battles, or save lives. Devices embedded with image and speech recognition capabilities could become our eyes and ears. Repairmen could use AR to find leaks or diagnose defective equipment. The wonders of augmented reality virtual elements, along with artificial intelligence, will become much more apparent to us in the next few years.